
3/26/2021

1

ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Finite-difference methods for
boundary-value problems

Introduction

• In this topic, we will

– Describe finite-difference approximations of linear
ordinary differential equations (LODEs)

– See how this can be used to approximate solutions to
boundary-value problems (BVPs)

– Observe that this defines a system of linear equations

– Look at examples with both constant coefficients and with
variable coefficients

– Describe implementations in MATLAB

A finite-difference method

2

1

2

3/26/2021

2

Linear ordinary differential equations

• In this lecture, we will focus on a technique appropriate for
linear ordinary differential equations (LODEs)

– The most general form is a linear combination of u(x) and its
derivatives:

– The coefficients can be functions of x

• In your calculus course, you focused on solutions to LODEs with
constant coefficients:

– These approximation techniques will, however, generalize

A finite-difference method

3

() ()() () ()() () () ()2 1

2 1 0a x u x a x u x a x u x g x+ + =

()() ()() () ()2 1

2 1 0a u x a u x a u x g x+ + =

Approximating the derivative

• Previously, we saw two approximations:

– How about substituting these two approximations into the LODE?

A finite-difference method

4

()()
() ()

()()
() () ()

1

2

2

2

2

u x h u x h
u x

h

u x h u x u x h
u x

h

− − + +


− − + +


() ()() () ()() () () ()2 1

2 1 0a x u x a x u x a x u x g x+ + =

3

4

3/26/2021

3

• Thus, we go from

to

A finite-difference method

5

() ()() () ()() () () ()2 1

2 1 0a x u x a x u x a x u x g x+ + =

()
() () ()

()
() ()

() () ()

2 12

0

2

2

u x h u x u x h u x h u x h
a x a x

h h

a x u x g x

− − + + − − + +   
+   

   

+ 

• Let’s expand this and collect on u(x – h), u(x) and u(x + h):

A finite-difference method

6

()
() () ()

()
() ()

() () ()

2 12

0

2

2

u x h u x u x h u x h u x h
a x a x

h h

a x u x g x

− − + + − − + +   
+   

   

+ 

()
() ()

()
()

() ()
() ()

()2 1 2 2 1

02 2 2

2

2 2

a x a x a x a x a x
u x h u x a x u x h g x

h h h h h

     
− − + − + + + +      

     

5

6

3/26/2021

4

• Finally, multiply by 2h2:

A finite-difference method

7

()
() ()

()
()

() ()
() ()

()2 1 2 2 1

02 2 2

2

2 2

a x a x a x a x a x
u x h u x a x u x h g x

h h h h h

     
− − + − + + + +      

     

() () ()() () () ()() () () ()()

()

2

2 1 2 0 2 1

2

2 4 2 2

 2

u x h a x a x h u x a x h a x u x h a x a x h

g x h

− − + − + + + +



• Therefore, if u(x) satisfies this LODE,

then it must also be true that

A finite-difference method

8

() ()() () ()() () () ()2 1

2 1 0a x u x a x u x a x u x g x+ + =

() () ()() () () ()() () () ()()

()

2

2 1 2 0 2 1

2

2 4 2 2

 2

u x h a x a x h u x a x h a x u x h a x a x h

g x h

− − + − + + + +



7

8

3/26/2021

5

() ()() () ()() () () ()

()

()

2 1

2 1 0

a

b

a x u x a x u x a x u x g x

u a u

u b u

+ + =

=

=

Visualization

• Let’s look at the problem visually:

– Break the interval [a, b] into n sub-intervals

• Each is of width

• Thus, xk = a + kh with x0 = a and xn = b

A finite-difference method

9

x1 b

bu

a

b a
h

n

−
=

au

x2 x3 x4 x5 x6 x7 x8 x9

()1u x

()6u x

Visualization

• Let’s focus on a single point xk:

– We don’t know the value of u(xk),
but the following equation should hold approximately true:

– Represent our estimate of u(xk) with uk so uk ≈ u(xk)

A finite-difference method

10

x1 xn

bu

x0

au

x2 xk–1 xk xk+1 xn–2xn–1

()k ku u x

() () ()() () () ()() () () ()()

()

2

2 1 2 0 2 1

2

2 4 2 2

 2

k k k k k k k k k

k

u x h a x a x h u x a x h a x u x h a x a x h

g x h

− − + − + + + +



9

10

3/26/2021

6

Visualization

• Note that xk – h = xk–1 and xk + h = xk+1,

u(xk – h) = u(xk–1) ≈ uk–1

u(xk + h) = u(xk+1) ≈ uk+1

A finite-difference method

11

x1 xn

bu

x0

au

x2 xk–1 xk xk+1 xn–2xn–1

()k ku u x

() ()1 1k k ku x h u x u+ ++ = 
() ()1 1k k ku x h u x u− −− = 

Visualization

• This looks ugly, but all four functions a2, a1, a0 and g as well as h
are all known

– Therefore, this is a linear equation in three unknowns

A finite-difference method

12

x1 xn
x0 x2 xk–1 xk xk+1 xn–2xn–1

() ()() () ()() () ()() ()2 2

1 2 1 2 0 1 2 12 4 2 2 2k k k k k k k k k ku a x a x h u a x h a x u a x a x h g x h− +− + − + + + 

() 2

1 1 2k k k k k k kp u q u r u g x h− ++ + 

() ()

() ()

() ()

2 1

2

2 0

2 1

2

4 2

2

k k k

k k k

k k k

p a x a x h

q a x a x h

r a x a x h

= −

= − +

= +

bu

au

()k ku u x

11

12

3/26/2021

7

Visualization

• There are unknowns from k = 1, 2, …, n – 1

– This gives n – 1 equations in the n + 1 unknowns u0, u1, …, un–1, un

A finite-difference method

13

1 0 1 1 1 2p u q u ru+ + () 2

12g x h=

2 1 2 2 2 3p u q u r u+ + () 2

22g x h=

() 2

22g x h=

() 2

22g x h=

() 2

22 ng x h−=

3 2 3 3 3 4p u q u r u+ +

4 3 4 4 4 5p u q u r u+ +

() 2

1 2 1 1 1 12n n n n n n np u q u r u g x h− − − − − −+ + =

2 3 2 2 2 1n n n n n np u q u r u− − − − − −+ +

Visualization

• Fortunately, we have two boundary values, so:

u0 = ua

un = ub

– Thus, Equations for k = 1 and k = n – 1 may be slightly modified:

A finite-difference method

14

() 2

1 1 1 1 2 12ap u q u ru g x h+ + =

() 2

1 2 1 1 1 12 bn n n n n np u q u g x h r u− − − − − −+ = −

() 2

1 1 1 2 1 12 aq u ru g x h up+ = −

() 2

1 2 1 1 1 12n n n n n b np u q u r g hu x− − − − − −+ + =

13

14

3/26/2021

8

• Thus, we have a system of n – 1 linear equations in n – 1 unknowns

– This is a tri-diagonal matrix

• It can be solved in O(n) time, and not O(n3) time

A finite-difference method

15

()

()

()

()

()

()

2

1 1 1 1 1

2

2 2 2 2 2

2

3 3 3 3 3

2

4 4 4 4 4

2

2 2 2 2 2

2

1 1 1 1 1

2

2

2

2

2

2

a

b

n n n n n

n n n n n

q r u g x h p

p q r u g x h

p q r u g x h

p q r u g x h

p q r u g x h

p q r

u

u ug x h

− − − − −

− − − − −

 −  
   
   
   
   

=    
   
   
   
    −    

• Suppose we have a LODE with constant coefficients:

– Now the matrix entries are identical:

A finite-difference method

16

2 1

2

2 0

2 1

2

4 2

2

p a a h

q a a h

r a a h

= −

= − +

= +

() () () ()2 2

1 2 1 2 0 1 2 12 4 2 2 2k k k ku a a h u a h a u a a h g x h− +− + − + + + 

15

16

3/26/2021

9

• Our matrix is now greatly simplified:

– All entries on the diagonal, the super-diagonal and the sub-
diagonal are the same

A finite-difference method

17

()

()

()

()

()

()

2

1 1

2

2 2

2

3 3

2

4 4

2

2 2

2

1 1

2

2

2

2

2

2

n n

a

n n b

uq r g x h p

up q r g x h

up q r g x h

up q r g x h

up q r g x h

up q g

u

ux h r

− −

− −

 −  
   
   
   
   

=    
   
   
   
    −    

Examples

• We will first look at both an implementation of,
and an example of a BVP with constant coefficients

– That is, a2, a1 and a0 fixed real values

• Next, we will look at the implementation of,
and an example of a BVP with non-constant coefficients

– That is, a2, a1 and a0 are functions of x

A finite-difference method

18

17

18

3/26/2021

10

Constant coefficient example
function [xs, us] = bvpcc(ode, g, x_rng, u_bndry, n)

h = (x_rng(2) - x_rng(1))/n;

p = 2.0*ode(1) - ode(2)*h;

q = -4.0*ode(1) + 2.0*ode(3)*h^2;

r = 2.0*ode(1) + ode(2)*h;

A = diag(q*ones(n - 1, 1)) ...

+ diag(r*ones(n - 2, 1), 1) ...

+ diag(p*ones(n - 2, 1), -1);

xs = linspace(x_rng(1) + h, x_rng(2) - h, n - 1)';

v = 2.0*g(xs)*h^2;

v(1) = v(1) - p*u_bndry(1);

v(end) = v(end) - r*u_bndry(2);

us = A \ v;

xs = [x_rng(1); xs; x_rng(2)];

us = [u_bndry(1); us; u_bndry(2)];

end

A finite-difference method

19

Constant coefficient example

• Suppose we have the following BVP:

• If n = 10, then h = 0.2, so

• Also, the x-values are –1, –0.8, –0.6, –0.4, –0.2, 0, 0.2, 0.4, 0.6, 0.8, 1

A finite-difference method

20

()() ()() () ()

()

()

2 1
3 2 sin

1 1

1 2

u x u x u x x

u

u

+ + =

− =

=

2 1

2

2 0

2 1

2

4 2

2

p a a h

q a a h

r a a h

= −

= − +

= +

2 1 3 0.2

4 1 2 2 0.04

2 1 3 0.2

=  − 

= −  +  

=  − 

1.4

3.84

2.6

=

= −

=

19

20

3/26/2021

11

Constant coefficient example

• Thus, we have our system of linear equations

A finite-difference method

21

()

()
1

2

3

4

5

6

7

8

9

2sin 0.8 0.04 1.4 13.84 2.6

2sin 0.6 0.041.4 3.84 2.6

2s1.4 3.84 2.6

1.4 3.84 2.6

1.4 3.84 2.6

1.4 3.84 2.6

1.4 3.84 2.6

1.4 3.84 2.6

1.4 3.84

u

u

u

u

u

u

u

u

u

− − −   
  

−−   
  −
  

−   
   =−
  

−   
  −
  

−   
  

−  

()

()

()

()

()

()

()

in 0.4 0.04

2sin 0.2 0.04

2sin 0 0.04

2sin 0.2 0.04

2sin 0.4 0.04

2sin 0.6 0.04

2sin 0.8 0.04 2.6 2

 
 
 
 −
 

− 
 
 
 
 
 
 
 

−  

Constant coefficient example

• Solving this system of linear equations yields:

A finite-difference method

22

3.265385521974507

4.262189198888517

4.519267459652307

4.367603345860092

4.011049560817661

3.572225242052188

3.122218881076646

2.699753319940751

2.323506812667992

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

u

()0.8u −

()0.4u

21

22

3/26/2021

12

Constant coefficient example

• In MATLAB, we can find this by calling:
>> [xs, us] = bvpcc([1 3 2], @sin, [-1 1], [1 2], 10);

>> u = @(x)(-0.32523483298690115734*exp(2.0 - 2.0*x) ...

- 0.19505820123410984121*exp(-1.0*x - 1.0) ...

+ 0.32523483298690115734*exp(-1.0*x + 3.0) ...

+ 0.19505820123410984121*exp(-2.0*x) ...

- 0.3*cos(x) + 0.1*sin(x);

A finite-difference method

23

Constant coefficient example

• Here is a plot of the solution and the approximations:

A finite-difference method

24

23

24

3/26/2021

13

General example

function [xs, us] = bvp(a2, a1, a0, g, x_rng, u_bndry, n)

h = (x_rng(2) - x_rng(1))/n;

p = @(x)(2.0*a2(x) - a1(x)*h);

q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);

r = @(x)(2.0*a2(x) + a1(x)*h);

xs = linspace(x_rng(1) + h, x_rng(2) - h, n - 1)';

A = zeros(n - 1, n - 1);

for k = 1:(n - 1)

A(k, k) = q(xs(k));

end

for k = 1:(n - 2)

A(k + 1, k) = p(xs(k + 1));

A(k, k + 1) = r(xs(k));

end

A finite-difference method

25

General example

v = 2.0*g(xs)*h^2;

v(1) = v(1) - p(xs(1))*u_bndry(1);

v(end) = v(end) - r(xs(end))*u_bndry(2);

us = A \ v;

xs = [x_rng(1); xs; x_rng(2)];

us = [u_bndry(1); us; u_bndry(2)];

end

A finite-difference method

26

25

26

3/26/2021

14

General example

• Suppose we have the following BVP:

• If n = 10, then h = 0.2, so

• As before,
the x-values are –1, –0.8, –0.6, –0.4, –0.2, 0, 0.2, 0.4, 0.6, 0.8, 1

A finite-difference method

27

()() ()() () ()

()

()

2 1213 5 8 sin

1 1

1 2

x u x u x xu x x

u

u

− + =

− =

=

() ()

() ()

() ()

2 1

2

2 0

2 1

2

4 2

2

k k k

k k k

k k k

p a x a x h

q a x a x h

r a x a x h

= −

= − +

= +

()

()

2

2

2

2 13 5 0.2

4 13 2 8 0.04

2 13 5 0.2

k

k

k

x

x x

x

=  − − 

= −  +  

=  + − 

General example

• Thus, we have our system of linear equations

A finite-difference method

28

()

()
1

2

3

4

5

6

7

8

9

2sin 0.8 0.04 17.6 133.8 15.6

2sin 0.6 0.0410.4 19.1 8.4

2s5.2 8.6 3.2

2.0 2.2 0.0

1.0 0.0 1.0

2.0 2.0 0.0

5.2 8.1 3.2

10.4 18.3 8.4

17.6 32.8

u

u

u

u

u

u

u

u

u

− − −   
  

−−   
  −
  

−   
   =−
  

−   
  −
  

−   
  

−  

()

()

()

()

()

()

()

in 0.4 0.04

2sin 0.2 0.04

2sin 0 0.04

2sin 0.2 0.04

2sin 0.4 0.04

2sin 0.6 0.04

2sin 0.8 0.04 15.6 2

 
 
 
 −
 

− 
 
 
 
 
 
 
 

−  

27

28

3/26/2021

15

General example

• Solving this system of linear equations yields:

A finite-difference method

29

0.912226606004807

0.839422824989929

0.782355814895478

0.742692476016105

0.699139454829521

0.742692476016104

0.984619294870424

1.309756419296422

1.657919761630765

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

u

()0.2u −

()0.8u

General example

• Here is a plot of the solution and the approximations:

– In this case, there is no exact solution, so the solution is actually
a very precise numerical approximation

A finite-difference method

30

29

30

3/26/2021

16

General example

• We can also use more points:
>> [xs, us] = bvp(@(x)(x^2*13), @(x)(-5.0), @(x)(8*x),...

@sin, [-1 1], [1 2], 200)

A finite-difference method

31

Error analysis

• Beyond the scope of this course,
even though we are using two O(h2) approximations of
the derivative and second derivative

– The overall error of this method is still O(h2) as we are solving
these simultaneously

– Thus, doubling the number of intervals reduces the error by four

A finite-difference method

32

31

32

3/26/2021

17

Summary

• Following this topic, you now

– Understand the idea finite difference approximations

• For a LODE, we substitute approximations of the derivative and
second derivatives

– Know that this defines a system of linear equations

– Understand that this solution gives the approximations at the
equally spaced points between a and b

– Are aware that if the LODE has constant coefficients,
all entries on the diagonal, super-diagonal and sub-diagonal are
equal, respectively

– Have seen implementations in MATLAB

A finite-difference method

33

References

[1] https://en.wikipedia.org/wiki/Finite_difference_method

A finite-difference method

34

33

34

3/26/2021

18

Acknowledgments

None so far.

A finite-difference method

35

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

A finite-difference method

36

35

36

3/26/2021

19

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

A finite-difference method

37

37

