

1

2

Linear ordinary differential equations

- In this lecture, we will focus on a technique appropriate for linear ordinary differential equations (LODEs)
- The most general form is a linear combination of $u(x)$ and its derivatives:

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x)
$$

- The coefficients can be functions of x
- In your calculus course, you focused on solutions to LODES with constant coefficients:

$$
a_{2} u^{(2)}(x)+a_{1} u^{(1)}(x)+a_{0} u(x)=g(x)
$$

- These approximation techniques will, however, generalize

3

Approximating the derivative

- Previously, we saw two approximations:

$$
\begin{aligned}
& u^{(1)}(x) \approx \frac{-u(x-h)+u(x+h)}{2 h} \\
& u^{(2)}(x) \approx \frac{u(x-h)-2 u(x)+u(x+h)}{h^{2}}
\end{aligned}
$$

- How about substituting these two approximations into the LODE?

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x)
$$

- Thus, we go from

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x)
$$

to

$$
\begin{aligned}
a_{2}(x)\left(\frac{u(x-h)-2 u(x)+u(x+h)}{h^{2}}\right) & +a_{1}(x)\left(\frac{-u(x-h)+u(x+h)}{2 h}\right) \\
& +a_{0}(x) u(x) \approx g(x)
\end{aligned}
$$

5

- Let's expand this and collect on $u(x-h), u(x)$ and $u(x+h)$:

$$
\begin{aligned}
& a_{2}(x)\left(\frac{u(x-h)-2 u(x)+u(x+h)}{h^{2}}\right)+a_{1}(x)\left(\frac{-u(x-h)+u(x+h)}{2 h}\right) \\
&+a_{0}(x) u(x) \approx g(x) \\
& u(x-h)\left(\frac{a_{2}(x)}{h^{2}}-\frac{a_{1}(x)}{2 h}\right)+u(x)\left(-\frac{2 a_{2}(x)}{h^{2}}+a_{0}(x)\right)+u(x+h)\left(\frac{a_{2}(x)}{h^{2}}+\frac{a_{1}(x)}{2 h}\right) \approx g(x)
\end{aligned}
$$

6

- Finally, multiply by $2 h^{2}$:

$$
\begin{array}{r}
u(x-h)\left(\frac{a_{2}(x)}{h^{2}}-\frac{a_{1}(x)}{2 h}\right)+u(x)\left(-\frac{2 a_{2}(x)}{h^{2}}+a_{0}(x)\right)+u(x+h)\left(\frac{a_{2}(x)}{h^{2}}+\frac{a_{1}(x)}{2 h}\right) \approx g(x) \\
u(x-h)\left(2 a_{2}(x)-a_{1}(x) h\right)+u(x)\left(-4 a_{2}(x)+2 h^{2} a_{0}(x)\right)+u(x+h)\left(2 a_{2}(x)+a_{1}(x) h\right) \\
\approx 2 g(x) h^{2}
\end{array}
$$

7

- Therefore, if $u(x)$ satisfies this LODE,

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x)
$$

then it must also be true that

$$
\begin{aligned}
& u(x-h)\left(2 a_{2}(x)-a_{1}(x) h\right)+u(x)\left(-4 a_{2}(x)+2 h^{2} a_{0}(x)\right)+u(x+h)\left(2 a_{2}(x)+a_{1}(x) h\right) \\
& \approx 2 g(x) h^{2}
\end{aligned}
$$

8

Visualization

- Let's look at the problem visually:

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x)
$$

- Break the interval $[a, b]$ into n sub-intervals

$$
u(a)=u_{a}
$$

- Each is of width $h=\frac{b-a}{n}$
- Thus, $x_{k}=a+k h$ with $x_{0}=a$ and $x_{n}=b$

$$
a \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6} \quad x_{7} x_{8}
$$

9

Visualization

- Let's focus on a single point x_{k} :
- We don't know the value of $u\left(x_{k}\right)$,
but the following equation should hold approximately true:

$$
\begin{aligned}
& u\left(x_{k}-h\right)\left(2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h\right)+u\left(x_{k}\right)\left(-4 a_{2}\left(x_{k}\right)+2 h^{2} a_{0}\left(x_{k}\right)\right)+u\left(x_{k}+h\right)\left(2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h\right) \\
& \approx 2 g\left(x_{k}\right) h^{2}
\end{aligned}
$$

- Represent our estimate of $u\left(x_{k}\right)$ with u_{k} so $u_{k} \approx u\left(x_{k}\right)$

Visualization

- Note that $x_{k}-h=x_{k-1}$ and $x_{k}+h=x_{k+1}$,

$$
\begin{aligned}
& u\left(x_{k}-h\right)=u\left(x_{k-1}\right) \approx u_{k-1} \\
& u\left(x_{k}+h\right)=u\left(x_{k+1}\right) \approx u_{k+1}
\end{aligned}
$$

$$
\begin{align*}
& u\left(x_{k}-h\right)=u\left(x_{k-1}\right) \approx u_{k-1}^{u_{k} \approx u\left(x_{k}\right)} u\left(x_{k}+h\right)=u\left(x_{k+1}\right) \approx u_{k+1} \\
& \begin{array}{lllllll}
+ & + & +\infty & +\infty & +\infty & +\infty & + \\
x_{0} & x_{1} & x_{2} & x_{k-1} x_{k} & x_{k+1} & x_{n-2} x_{n-1} x_{n}
\end{array} \tag{11}
\end{align*}
$$

Visualization

- This looks ugly, but all four functions a_{2}, a_{1}, a_{0} and g as well as h are all known

$$
u_{k-1}\left(2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h\right)+u_{k}\left(-4 a_{2}\left(x_{k}\right)+2 h^{2} a_{0}\left(x_{k}\right)\right)+u_{k+1}\left(2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h\right) \approx 2 g\left(x_{k}\right) h^{2}
$$

- Therefore, this is a linear equation in three unknowns

$$
\begin{align*}
& p_{k}=2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h h_{k} p_{k-1}+q_{k} u_{k}+r_{k} u_{k+1} \approx 2 g\left(x_{k}\right) h^{2} \\
& q_{k}=-4 a_{2}\left(x_{k}\right)+2 a_{0}\left(x_{k}\right) h^{2} \\
& r_{k}=2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h
\end{align*}
$$

Visualization

- There are unknowns from $k=1,2, \ldots, n-1$

$$
\begin{aligned}
& p u_{0}+q_{1}\left(u_{1}+r u_{2}\right. \\
& p_{2} u_{1}+q_{2} u_{2}+r u_{3}, \quad=2 g\left(x_{2}\right) h^{2} \\
& \left.p_{3} u_{2}+q_{3} u_{3}+r_{3} u_{4}\right)=2 g\left(x_{2}\right) h^{2} \\
& p_{4} u_{3}+q_{4} u_{4}+r u_{5} \quad=2 g\left(x_{2}\right) h^{2} \\
& \begin{aligned}
p_{n-2} u_{n-3}+q_{n-2} u_{n-2}+r_{n-2} u_{n-1} & =2 g\left(x_{n-2}\right) h^{2} \\
p_{n-1} u_{n-2}+q_{n-1} u_{n-1}+r_{n-1} u_{n} & =2 g\left(x_{n-1}\right) h^{2}
\end{aligned}
\end{aligned}
$$

- This gives $n-1$ equations in the $n+1$ unknowns $u_{0}, u_{1}, \ldots, u_{n-1}, u_{n}$

13

Visualization

- Fortunately, we have two boundary values, so:

$$
\begin{aligned}
& u_{0}=u_{a} \\
& u_{n}=u_{b}
\end{aligned}
$$

- Thus, Equations for $k=1$ and $k=n-1$ may be slightly modified:

$$
\begin{gathered}
p_{1} u_{a}+q_{1} u_{1}+r_{1} u_{2}=2 g\left(x_{1}\right) h^{2} \\
q_{1} u_{1}+r_{1} u_{2}=2 g\left(x_{1}\right) h^{2}-p_{1} u_{a} \\
p_{n-1} u_{n-2}+q_{n-1} u_{n-1}+r_{n-1} u_{b}=2 g\left(x_{n-1}\right) h^{2} \\
p_{n-1} u_{n-2}+q_{n-1} u_{n-1}=2 g\left(x_{n-1}\right) h^{2}-r_{n-1} u_{b}
\end{gathered}
$$

- Thus, we have a system of $n-1$ linear equations in $n-1$ unknowns
- This is a tri-diagonal matrix
- It can be solved in $\mathrm{O}(n)$ time, and not $\mathrm{O}\left(n^{3}\right)$ time

$$
\left(\begin{array}{ccccccc}
q_{1} & r_{1} & & & & & \\
p_{2} & q_{2} & r_{2} & & & & \\
& p_{3} & q_{3} & r_{3} & & & \\
& & p_{4} & q_{4} & r_{4} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & p_{n-2} & q_{n-2} & r_{n-2} \\
& & & & & p_{n-1} & q_{n-1}
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right)=\left(\begin{array}{l}
2 g\left(x_{1}\right) h^{2}-p_{1} u_{a} \\
2 g\left(x_{2}\right) h^{2} \\
2 g\left(x_{3}\right) h^{2} \\
2 g\left(x_{4}\right) h^{2} \\
\vdots \\
2 g\left(x_{n-2}\right) h^{2} \\
2 g\left(x_{n-1}\right) h^{2}-r_{n-1} u_{b}
\end{array}\right)
$$

- Suppose we have a LODE with constant coefficients:

$$
u_{k-1}\left(2 a_{2}-a_{1} h\right)+u_{k}\left(-4 a_{2}+2 h^{2} a_{0}\right)+u_{k+1}\left(2 a_{2}+a_{1} h\right) \approx 2 g\left(x_{k}\right) h^{2}
$$

- Now the matrix entries are identical:

$$
\begin{aligned}
p & =2 a_{2}-a_{1} h \\
q & =-4 a_{2}+2 a_{0} h^{2} \\
r & =2 a_{2}+a_{1} h
\end{aligned}
$$

- Our matrix is now greatly simplified:
- All entries on the diagonal, the super-diagonal and the subdiagonal are the same

$$
\left(\begin{array}{lllllll}
q & r & & & & & \\
p & q & r & & & & \\
& p & q & r & & & \\
& & p & q & r & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & p & q & r \\
& & & & & p & q
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right)=\left(\begin{array}{l}
2 g\left(x_{1}\right) h^{2}-p u_{a} \\
2 g\left(x_{2}\right) h^{2} \\
2 g\left(x_{3}\right) h^{2} \\
2 g\left(x_{4}\right) h^{2} \\
\vdots \\
2 g\left(x_{n-2}\right) h^{2} \\
2 g\left(x_{n-1}\right) h^{2}-r u_{b}
\end{array}\right)
$$

Constant coefficient example

```
function [xs, us] = bvpcc( ode, g, x_rng, u_bndry, n )
    h = (x_rng(2) - x_rng(1))/n;
    p = 2.0*ode(1) - ode(2)*h;
    q = -4.0*ode(1) + 2.0*ode(3)*h^2;
    r = 2.0*ode(1) + ode(2)*h;
    A = diag( q*ones( n - 1, 1 ) )
        + diag( r*ones( n - 2, 1 ), 1 ) ...
        + diag( p*ones( n - 2, 1 ), -1 );
    xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';
    v = 2.0*g( xs )*h^2;
    v(1) = v(1) - p*u_bndry(1);
    v(end) = v(end) - r*u_bndry(2);
    us = A \ v;
    xs = [x_rng(1); xs; x_rng(2)];
    us = [u_bndry(1); us; u_bndry(2)];
```

end

19

Constant coefficient example

- Suppose we have the following BVP:

$$
\begin{aligned}
u^{(2)}(x)+3 u^{(1)}(x)+2 u(x) & =\sin (x) \\
u(-1) & =1 \\
u(1) & =2
\end{aligned}
$$

- If $n=10$, then $h=0.2$, so

$$
\begin{array}{rll}
p=2 a_{2}-a_{1} h & =2 \cdot 1-3 \cdot 0.2 & =1.4 \\
q=-4 a_{2}+2 a_{0} h^{2} & =-4 \cdot 1+2 \cdot 2 \cdot 0.04 & =-3.84 \\
r=2 a_{2}+a_{1} h & =2 \cdot 1-3 \cdot 0.2 & =2.6
\end{array}
$$

- Also, the x-values are $-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1$

Constant coefficient example

- Thus, we have our system of linear equations

$$
\left(\begin{array}{cccccccc}
-3.84 & 2.6 & & & & & \\
\hline 1.4 & -3.84 & 2.6 & & & & \\
1.4 & -3.84 & 2.6 & & & \\
& & 1.4 & -3.84 & 2.6 & & \\
& & 1.4 & -3.84 & 2.6 & & \\
& & & 1.4 & -3.84 & 2.6 & \\
& & & & 1.4 & -3.84 & 2.6 & \\
& & & & & 1.4 & -3.84 & 2.6 \\
& & & & & 1.4 & -3.84
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{7} \\
u_{8} \\
u_{9}
\end{array}\right)=\left(\begin{array}{l}
2 \sin (-0.8) 0.04-1.4 \cdot 1 \\
2 \sin (-0.6) 0.04 \\
2 \sin (-0.4) 0.04 \\
2 \sin (-0.2) 0.04 \\
2 \sin (0) 0.04 \\
2 \sin (0.2) 0.04 \\
2 \sin (0.4) 0.04 \\
2 \sin (0.6) 0.04 \\
2 \sin (0.8) 0.04-2.6 \cdot 2
\end{array}\right)
$$

21

23

General example

```
function [xs, us] = bvp( a2, a1, a0, g, x_rng, u_bndry, n )
    h = (x_rng(2) - x_rng(1))/n;
    p = @(x)( 2.0*a2(x) - a1(x)*h );
    q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);
    r=@(x)( 2.0*a2(x) + a1(x)*h );
    xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';
    A = zeros( n - 1, n - 1 );
    for k = 1:(n - 1)
        A(k, k) = q(xs(k));
    end
    for k = 1:(n - 2)
        A(k+1,k ) = p(xs(k + 1));
        A(k, k + 1) = r(xs(k));
    end
```


General example

- Suppose we have the following BVP:

$$
\begin{aligned}
13 x^{2} u^{(2)}(x)-5 u^{(1)}(x)+8 x u(x) & =\sin (x) \\
u(-1) & =1 \\
u(1) & =2
\end{aligned}
$$

- If $n=10$, then $h=0.2$, so

$$
\begin{aligned}
p_{k}=2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h & =2 \cdot 13 x_{k}^{2}-(-5) \cdot 0.2 \\
q_{k} & =-4 a_{2}\left(x_{k}\right)+2 a_{0}\left(x_{k}\right) h^{2}
\end{aligned}=-4 \cdot 13 x_{k}^{2}+2 \cdot 8 x \cdot 0.04, \begin{aligned}
r_{k} & =2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h
\end{aligned}=2 \cdot 13 x_{k}^{2}+(-5) \cdot 0.24
$$

- As before,
the x-values are $-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1$

- Thus, we have our system of linear equations

31

Summary

- Following this topic, you now
- Understand the idea finite difference approximations
- For a LODE, we substitute approximations of the derivative and second derivatives
- Know that this defines a system of linear equations
- Understand that this solution gives the approximations at the equally spaced points between a and b
- Are aware that if the LODE has constant coefficients, all entries on the diagonal, super-diagonal and sub-diagonal are equal, respectively
- Have seen implementations in MATLAB

33

35

36

