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Finite-difference methods for
boundary-value problems

Introduction

• In this topic, we will

– Describe finite-difference approximations of linear 
ordinary differential equations (LODEs)

– See how this can be used to approximate solutions to 
boundary-value problems (BVPs)

– Observe that this defines a system of linear equations

– Look at examples with both constant coefficients and with 
variable coefficients

– Describe implementations in MATLAB

A finite-difference method
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Linear ordinary differential equations

• In this lecture, we will focus on a technique appropriate for 
linear ordinary differential equations (LODEs)

– The most general form is a linear combination of u(x) and its 
derivatives:

– The coefficients can be functions of x

• In your calculus course, you focused on solutions to LODEs with 
constant coefficients:

– These approximation techniques will, however, generalize

A finite-difference method
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Approximating the derivative

• Previously, we saw two approximations:

– How about substituting these two approximations into the LODE?
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• Thus, we go from

to

A finite-difference method
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• Let’s expand this and collect on u(x – h), u(x) and u(x + h):
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• Finally, multiply by 2h2:

A finite-difference method
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• Therefore, if u(x) satisfies this LODE,

then it must also be true that
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Visualization

• Let’s look at the problem visually:

– Break the interval [a, b] into n sub-intervals

• Each is of width 

• Thus, xk = a + kh with x0 = a and xn = b

A finite-difference method
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Visualization

• Let’s focus on a single point xk:

– We don’t know the value of u(xk),
but the following equation should hold approximately true:

– Represent our estimate of u(xk) with uk so uk ≈ u(xk)

A finite-difference method
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Visualization

• Note that xk – h = xk–1 and xk + h = xk+1,

u(xk – h) = u(xk–1) ≈ uk–1

u(xk + h) = u(xk+1) ≈ uk+1

A finite-difference method
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Visualization

• This looks ugly, but all four functions a2, a1, a0 and g as well as h
are all known

– Therefore, this is a linear equation in three unknowns
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Visualization

• There are unknowns from k = 1, 2, …, n – 1

– This gives n – 1 equations in the n + 1 unknowns u0, u1, …, un–1, un

A finite-difference method
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Visualization

• Fortunately, we have two boundary values, so:

u0 = ua

un = ub

– Thus, Equations for k = 1 and k = n – 1 may be slightly modified:
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• Thus, we have a system of n – 1 linear equations in n – 1 unknowns

– This is a tri-diagonal matrix

• It can be solved in O(n) time, and not O(n3) time
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• Suppose we have a LODE with constant coefficients:

– Now the matrix entries are identical:
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• Our matrix is now greatly simplified:

– All entries on the diagonal, the super-diagonal and the sub-
diagonal are the same
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Examples

• We will first look at both an implementation of,
and an example of a BVP with constant coefficients

– That is, a2, a1 and a0 fixed real values

• Next, we will look at the implementation of,
and an example of a BVP with non-constant coefficients

– That is, a2, a1 and a0 are functions of x
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Constant coefficient example
function [xs, us] = bvpcc( ode, g, x_rng, u_bndry, n )

h = (x_rng(2) - x_rng(1))/n;

p =  2.0*ode(1) - ode(2)*h;

q = -4.0*ode(1) + 2.0*ode(3)*h^2;

r =  2.0*ode(1) +     ode(2)*h;

A = diag( q*ones( n - 1, 1 ) )      ...

+ diag( r*ones( n - 2, 1 ),  1 )  ...

+ diag( p*ones( n - 2, 1 ), -1 );

xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';

v = 2.0*g( xs )*h^2;

v(1)   = v(1)   - p*u_bndry(1);

v(end) = v(end) - r*u_bndry(2);

us = A \ v;

xs = [x_rng(1);   xs; x_rng(2)];

us = [u_bndry(1); us; u_bndry(2)];

end

A finite-difference method
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Constant coefficient example

• Suppose we have the following BVP:

• If n = 10, then h = 0.2, so

• Also, the x-values are –1, –0.8, –0.6, –0.4, –0.2, 0, 0.2, 0.4, 0.6, 0.8, 1
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Constant coefficient example

• Thus, we have our system of linear equations
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Constant coefficient example

• Solving this system of linear equations yields:
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Constant coefficient example

• In MATLAB, we can find this by calling:
>> [xs, us] = bvpcc( [1 3 2], @sin, [-1 1], [1 2], 10 );

>> u = @(x)( -0.32523483298690115734*exp( 2.0   - 2.0*x) ...

- 0.19505820123410984121*exp(-1.0*x - 1.0)   ...

+ 0.32523483298690115734*exp(-1.0*x + 3.0)   ...

+ 0.19505820123410984121*exp(-2.0*x)         ...

- 0.3*cos(x) + 0.1*sin(x);

A finite-difference method
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Constant coefficient example

• Here is a plot of the solution and the approximations:

A finite-difference method
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General example

function [xs, us] = bvp( a2, a1, a0, g, x_rng, u_bndry, n )

h = (x_rng(2) - x_rng(1))/n;

p = @(x)( 2.0*a2(x) - a1(x)*h  );

q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);

r = @(x)( 2.0*a2(x) +     a1(x)*h  );

xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';

A = zeros( n - 1, n - 1 );

for k = 1:(n - 1)

A(k, k) = q(xs(k));

end

for k = 1:(n - 2)

A(k + 1, k    ) = p(xs(k + 1));

A(k,     k + 1) = r(xs(k));

end

A finite-difference method
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General example

v = 2.0*g( xs )*h^2;

v(1)   = v(1)   - p(xs(1)  )*u_bndry(1);

v(end) = v(end) - r(xs(end))*u_bndry(2);

us = A \ v;

xs = [x_rng(1);   xs; x_rng(2)];

us = [u_bndry(1); us; u_bndry(2)];

end

A finite-difference method

26

25

26



3/26/2021

14

General example

• Suppose we have the following BVP:

• If n = 10, then h = 0.2, so

• As before,
the x-values are –1, –0.8, –0.6, –0.4, –0.2, 0, 0.2, 0.4, 0.6, 0.8, 1

A finite-difference method
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General example

• Thus, we have our system of linear equations
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General example

• Solving this system of linear equations yields:

A finite-difference method
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General example

• Here is a plot of the solution and the approximations:

– In this case, there is no exact solution, so the solution is actually
a very precise numerical approximation

A finite-difference method
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General example

• We can also use more points:
>> [xs, us] = bvp( @(x)(x^2*13), @(x)(-5.0), @(x)(8*x),...

@sin, [-1 1], [1 2], 200 )

A finite-difference method
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Error analysis

• Beyond the scope of this course,
even though we are using two O(h2) approximations of
the derivative and second derivative

– The overall error of this method is still O(h2) as we are solving 
these simultaneously

– Thus, doubling the number of intervals reduces the error by four

A finite-difference method
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Summary

• Following this topic, you now

– Understand the idea finite difference approximations

• For a LODE, we substitute approximations of the derivative and 
second derivatives

– Know that this defines a system of linear equations

– Understand that this solution gives the approximations at the
equally spaced points between a and b

– Are aware that if the LODE has constant coefficients,
all entries on the diagonal, super-diagonal and sub-diagonal are 
equal, respectively

– Have seen implementations in MATLAB

A finite-difference method
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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